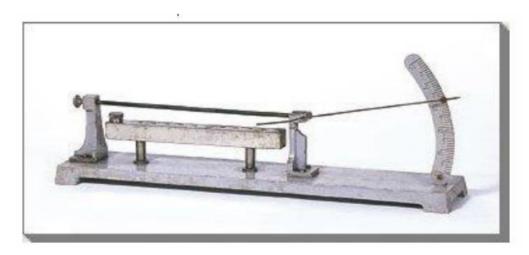


Formato para prácticas de laboratorio

CARRERA	PLAN DE ESTUDIO	CLAVE DE UNIDAD DE APRENDIZAJE	NOMBRE DE LA UNIDAD DE APRENDIZAJE
Ingeniería Industrial	2007-2	9021	INSTRUMENTO DE MEDICION


PRÁCTICA	LABORATORIO	Metrología y Normalización	DURACIÓN
No.	DE		(HORAS)
11	NOMBRE DE LA PRÁCTICA	DILATOMETRO	2

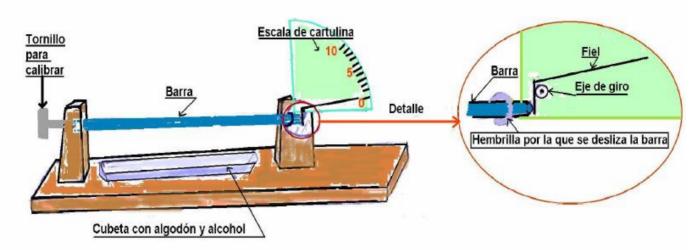
1. INTRODUCCIÓN

Son instrumentos utilizados para medir la expansión/contracción relativa de sólidos en diferentes temperaturas.

Clasificación de los dilatómetros:

Los tipos de dilatómetros se clasifican según la forma en cómo toman los datos ya sea de forma: Manual: tanto la temperatura como la longitud de la muestra se toman manualmente y la corrección por expansión térmica lineal del equipo se hace posteriormente. Grabación: se adquieren los datos en forma instrumental, pero la corrección por expansión del equipo se hace manualmente. Grabación automática: es similar al anterior, pero la corrección por expansión lo hace el equipo en forma automática.

Formuló	Revisó	Aprobó	Autorizó
Ing. Ana Laura Sánchez Corona	Ing. Margarita Gil Samaniego Ramos		
Nombre y Firma del Maestro	Nombre y Firma del Responsable de Programa Educativo	Nombre y Firma del Responsable de Gestión de Calidad	Nombre y Firma del Director de la Facultad


Código: GC-N4-017

Formatos para prácticas de laboratorio

2. OBJETIVO (COMPETENCIA)

Conocer cada parte del instrumento:

3. FUNDAMENTO

- Que el alumno se familiarice y conozca el equipo
- Aprender a utilizar correctamente el instrumento de medición
- Conocer aplicaciones y usos del equipo

4. PROCEDIMIENTO (DESCRIPCIÓN)

A) EQUIPO NECESARIO

MATERIAL DE APOYO

- Un dilatómetro
- Partes de concreto y/o metal

Código: GC-N4-017

Formatos para prácticas de laboratorio

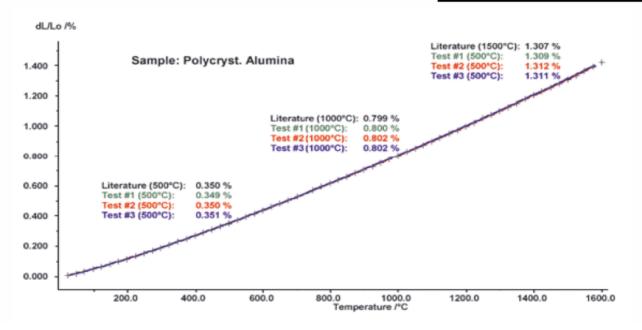
B) DESARROLLO DE LA PRÁCTICA

Se coloca la muestra dentro del horno del dilatómetro para aplicar el calor y poder tomar la lectura de la dilatación o contracción de la muestra.

Se procede a tomar los datos para la realización manual de los cálculos.

C) CÁLCULOS Y REPORTE

Intervalo de temperaturas:


Tasas de calentamiento y de enfriamiento: Intervalos de medición:

Longitud de la muestra:

Diámetro de la muestra:

La grafica se realizara con los datos tomados similar a la grafica mostrada a continuación como ejemplo.

Muestra	Lectura
1.	
2.	
3.	
4.	

Código: GC-N4-017

Formatos para prácticas de laboratorio

5. RESULTADOS Y CONCLUSIONES

Representación gráfica de las curvas de expansión/contracción absolutas o relativas

Diferentes opciones de corrección: - corrección del comportamiento de expansión propio del sistema mediante ya sea una medición de calibración o corrección de la sujeción de muestra - corrección compensatoria

Derivación de curvas para la determinación de las tasas de expansión lineales dependientes del tiempo o de la temperatura

Coeficientes de expansión: cálculo y presentación gráfica de los coeficientes de expansión técnicos y físicos

6. ANEXOS

Dilatación: es el aumento/disminución de volumen que experimentan los cuerpos cuando aumenta/disminuye su temperatura.

Dilatación de los sólidos: Todos tienden a incrementar su volumen en mayor o menor grado cuando se le aplica calor, y por ende, aumenta su temperatura.

Aplicaciones más comunes:

Este efecto se observa los pavimentos de concreto y vías férreas o rieles, que se alargan al calentarse. La dilatación se puede medir y demostrar mediante un aparato llamado dilatómetro. Los dilatómetros han sido usados para control de calidad en materiales o en producción.

7. REFERENCIAS

Se tomara como referencia información obtenida en clase así como de las investigaciones y artículos que se tengan.

Código: GC-N4-017