

Formatos para prácticas de laboratorio

CARRERA	PLAN DE ESTUDIO	CLAVE DE UNIDAD DE APRENDIZAJE	NOMBRE DE LA UNIDAD DE APRENDIZAJE
Ing. Aeroespacial	2009-3	11352	Mediciones eléctricas y electrónicas

PRÁCTICA	LABORATORIO	Laboratorio de Mediciones eléctricas y electrónicas	DURACIÓN
No.	DE		(HORAS)
4	NOMBRE DE LA PRÁCTICA	Uso de la fuente de CD y del multímetro	8

1. INTRODUCCIÓN

Cualquier circuito electrónico o aparato electrónico requiere de una fuente de CD, ejemplos: televisión, computadora, DVD, celular, Ipad, etc.

2. OBJETIVO (COMPETENCIA)

Utilizar las diversas fuentes de poder de corriente directa, así como los multímetros para llevar a cabo medición de voltaje y corrientes en diferentes componentes electrónicos de manera segura y adecuada.

3. FUNDAMENTO

La fuente de voltaje es la encargada de proporcionar al circuito la energía necesaria para realice la actividad para lo cual fue diseñado. De ahí radica la importancia de manipularla adecuadamente siguiendo las normas de seguridad. Por otro lado, es de suma importancia medir los parámetros para verificar que este funcionando tal como fue calculado. Para medir o comprobar es necesario utilizar el instrumento de medición llamado Multímetro. Por lo tanto es necesario manipularlo y conocer sus rangos de operación. En las figuras siguientes muestran las diferentes fuentes y multímetros que cuenta este laboratorio.

Formatos para prácticas de laboratorio

Fuentes

Multimetros.

4. PROCEDIMIENTO (DESCRIPCIÓN)

A) EQUIPO NECESARIO

Diversas fuentes de poder de CD DVM

MATERIAL DE APOYO

Componentes electrónicos Accesorios Manuales del equipo.

B) DESARROLLO DE LA PRÁCTICA.

- 1) Manipular los diferentes controles de las fuentes de CD
- 2) Manipular los diferentes controles de los multímetros.
- 3) Verificar los valores máximos y mínimos de voltaje de las diversas fuentes de DC. mostrados en el pantalla y utilizando el DVM verifíquelos.
- 4) Armar los siguientes circuitos
- 4.1 Construir circuitos resistivos y medir caídas de voltaje y corriente en cada componente, utilizando los multímetros para comprobar los resultados que se obtienen al aplicar las leyes y teoremas de circuitos

NOTA: PARA CUIDAR LOS INSTRUMENTOS ES NECESARIO SABER CONECTARLOS ADECUADAMENTE, PARA MEDIR VOLTAJE ES NECESARIOS CONECTAR EL INSTRUMENTO EN PARALELO, Y PARA MEDIR CORRIENTE SE CONECTA EN SERIE. OBSERVA LAS FIGURAS SIGUIENTES.

Formatos para prácticas de laboratorio

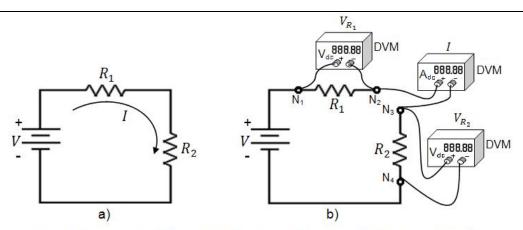


Figura 4.1 a) Circuito en serie con dos resistencias, b) Circuito en serie, muestra como se conectan los instrumentos de medición

a).- En el primer caso se analiza el funcionamiento del circuito resistivo serie con elementos cuyos valores no genere algún problema a la fuente de alimentación. Construya el circuito de la figura 4.1a), con V_{max} = 20 volts y seleccione las resistencias que estén dentro del rango siguiente $2K\Omega \leq R_1 + R_2 \leq 900K\Omega$. Mida el voltaje en cada resistencia y la corriente en el circuito de la figura 4.1b). Llene la tabla 4.1

Tabla 4.1. Datos medidos y calculados del circuito resistivo serie.

Table IIII Edito III odido y odiodia do die die odiodia i odiodia od odiodia							
	R ₁	R ₂	1	R Total	P Total		
Voltaje calculado			NP	NP	NP		
Voltaje medido			NP	NP	NP		
Corriente calculada			NP	NP	NP		
Corriente medida			· NP	NP	NP		
Corriente total calculada	NP	NP		NP	NP		
Corriente total medida	NP	NP		NP	NP		
Potencia calculada			NP	NP	NP		
Potencia con valores medidos			NP	NP			
Resistencia total calculada	NP	NP	NP		NP		
Resistencia total medida	NP	NP	NP		NP		
Potencia total calculada	NP	NP	NP	NP			

NP no anotar datos

b).- En segundo caso se analiza el funcionamiento del circuito resistivo serie con elementos cuyos valores demandan la corriente máxima de la fuente de dc. Construya el circuito de la figura 4.1, con V= 20 volts, seleccione las resistencias que estén dentro del rango siguiente $500\Omega \le R_1 + R_2 \le 1600\Omega$. Antes de construir el circuito calcule la potencia de las resistencias (llene la tabla 4.2), para seleccionar los elementos de la potencia adecuada. Mida el voltaje y corriente en cada resistencia del circuito. Llene la tabla 4.2

Tabla 4.2. Datos medidos y calculados, del circuito resistivo serie

Formatos para prácticas de laboratorio

	R ₁	R ₂	1	R Total	P Total
Voltaje calculado			NP	NP	NP
Voltaje medido			NP	NP	NP
Corriente calculada			NP	NP	NP
Corriente medida			· NP	NP	NP
Corriente total calculada	NP	NP		NP	NP
Corriente total medida	NP	NP		NP	NP
Potencia calculada			NP	NP	NP
Potencia con valores medidos			NP	NP	
Resistencia total calculada	NP	NP	NP		NP
Resistencia total medida	NP	NP	NP		NP
Potencia total calculada	NP	NP	NP	NP	

NP no anotar datos

c).- En el tercer caso se analiza el funcionamiento del circuito resistivo serie con elementos cuyos valores son de $1 M \Omega$ o mayores. Construya el circuito de la figura 4.1, con V_{max} = 20 volts y seleccione las resistencias cuyo valor sea $\geq 1 M \Omega$. Antes de construir el circuito calcule la potencia de las resistencias (llene la tabla 4.3), para seleccionar los elementos de la potencia adecuada. Mida el voltaje y corriente en cada resistencia del circuito. Llena la tabla 4.3.

Tabla 4.3. Datos medidos y calculados del circuito resistivo serie.

	R ₁	R ₂	I	R Total	P Total
Voltaje calculado			NP	NP	NP
Voltaje medido			NP	NP	NP
Corriente calculada			NP	NP	NP
Corriente medida			· NP	NP	NP
Corriente total calculada	NP	NP		NP	NP
Corriente total medida	NP	NP		NP	NP
Potencia calculada			NP	NP	NP
Potencia con valores medidos			NP	NP	
Resistencia total calculada	NP	NP	NP		NP
Resistencia total medida	NP	NP	NP		NP
Potencia total calculada	NP	NP	NP	NP	

NP no anotar datos

Comparar los resultados teóricos con los medidos y explicar las diferencias entre los valores calculados y los medidos

4.2. Circuito resistivo paralelo, energizado con fuente de CD.

Formatos para prácticas de laboratorio

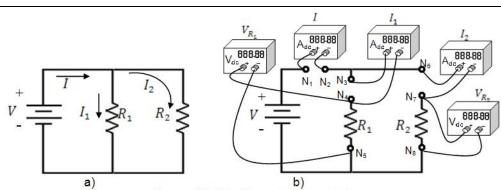


Figura 4.2. Circuito resistivo paralelo.

a).- En el primer caso se analiza el funcionamiento del circuito resistivo paralelo con elementos cuyos valores no genere algún problema a la fuente de alimentación. Construya el circuito de la figura 4.2, con V= 20 volts y seleccione las resistencias que estén dentro del rango siguiente $2K\Omega \le R_{Total} \le 900K\Omega$. Mida el voltaje en R₁, R₂ y las corrientes indicadas en el circuito. Llene la tabla 4.4

Tabla 4.4. Datos medidos y calculados del circuito resistivo paralelo

	R ₁	R ₂	I	R Total	P Total
Voltaje calculado			NP	NP	NP
Voltaje medido			NP	NP	NP
Corriente calculada			NP	NP	NP
Corriente medida			NP NP	NP	NP
Corriente total calculada	NP	NP		NP	NP
Corriente total medida	NP	NP		NP	NP
Potencia calculada			NP	NP	NP
Potencia con valores medidos			NP	NP	
Resistencia total calculada	NP	NP	NP		NP
Resistencia total medida	NP	NP	NP		NP
Potencia total calculada	NP	NP	NP	NP	

NP no anotar datos

b).- En segundo caso se analiza el funcionamiento del circuito resistivo paralelo con elementos cuyos valores requieren de más corriente que la corriente máxima de la fuente de dc. Construya el circuito de la figura 4.2, con V= 20 volts, seleccione las resistencias que estén dentro del siguiente rango $500\Omega \leq R_{Total} \leq 1600\Omega$. Antes de construir el circuito calcule la potencia de las resistencias (llene la tabla 4.5), para seleccionar los elementos de la potencia adecuada. Mida el voltaje, corriente en cada resistencia del circuito y llene la tabla 4.5

Formatos para prácticas de laboratorio

Tabla 4.5 Datos medidos y calculados del circuito resistivo paralelo.

	R ₁	R ₂	1	R Total	P Total
Voltaje calculado			NP	NP	NP
Voltaje medido			NP	NP	NP
Corriente calculada			NP	NP	NP
Corriente medida			· NP	NP	NP
Corriente total calculada	NP	NP		NP	NP
Corriente total medida	NP	NP		NP	NP
Potencia calculada			NP	NP	NP
Potencia con valores medidos			NP	NP	
Resistencia total calculada	NP	NP	NP		NP
Resistencia total medida	NP	NP	NP		NP
Potencia total calculada	NP	NP	NP	NP	

NP no anotar datos

c).- En el tercer caso se analiza el funcionamiento del circuito resistivo paralelo con elementos cuyos valores son de $\geq 1 M \Omega$. Construya el circuito de la figura 4.2, con V= 20 volts y seleccione las resistencias cuyo valor sea $\geq 1 M \Omega$. Antes de construir el circuito calcule la potencia de las resistencias (llene la tabla 4.6). Mida el voltaje y corriente en cada resistencia del circuito. Llene la tabla 4.6

Tabla 4.6 Daos calculados

	R ₁	R ₂	I	R Total	P _{Total}
Voltaje calculado			NP	NP	NP
Voltaje medido			NP	NP	NP
Corriente calculada			NP	NP	NP
Corriente medida			NP NP	NP	NP
Corriente total calculada	NP	NP		NP	NP
Corriente total medida	NP	NP		NP	NP
Potencia calculada			NP	NP	NP
Potencia con valores medidos			NP	NP	
Resistencia total calculada	NP	NP	NP		NP
Resistencia total medida	NP	NP	NP		NP
Potencia total calculada	NP	NP	NP	NP	

NP no anotar datos

Comparar los resultados teóricos con los medidos y explicar las diferencias entre los valores calculados y los medidos

Formatos para prácticas de laboratorio

4.3 Circuito resistivo serie-paralelo, alimentado con fuente de CD.

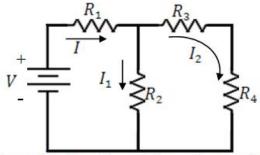


Figura 4.3. Circuito resistivo serie-paralelo.

a).- Construya el circuito de la figura 4.3, con V=15~volts y seleccione cada resistencia que este dentro del rango de $2K\Omega \leq R_{Total} \leq 900K\Omega$, todas las resistencias deben tener diferente valor. Mida el voltaje, corriente de cada resistencia del circuito y llene la tabla 4.7

Tabla 4.7. Datos medidos y calculados del circuito resistivo serie paralelo

111	R ₁	R ₂	R ₃	R ₄	1	R Total	P Total
Voltaje calculado					NP	NP	NP
Voltaje medido					NP	NP	NP
Corriente calculada					NP	NP	NP
Corriente medida					NP	NP	NP
Corriente total calculada	NP	NP	NP	NP		NP	NP
Corriente total medida	NP	NP	NP	NP		NP	NP
Potencia calculada					NP	NP	NP
Potencia con valores medidos					NP	NP	
Resistencia total calculada	NP	NP	NP	NP	NP		NP
Resistencia total medida	NP	NP	NP	NP	NP		NP
Potencia total calculada	NP	NP	NP	NP	NP	NP	

NP no anotar datos

Circuitos resistencia- capacitor

4.4.- Circuito RC serie, alimentado con fuente de CD.

Formatos para prácticas de laboratorio

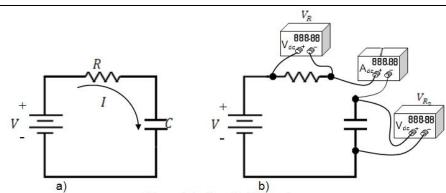


Figura 4.4. Circuito RC serie.

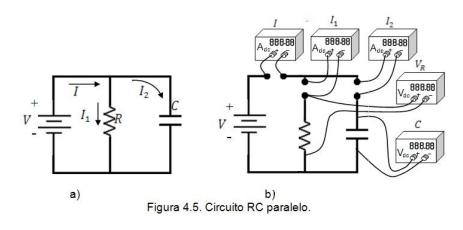

a).- Analizar el funcionamiento del circuito RC serie, alimentado con voltaje dc. Construya el circuito de la figura 4.4a), con V= 20 volts, resistencia que esté dentro del rango de $2K\Omega \leq R \leq 900K\Omega$ y el valor con $C=100~\mu F$. Mida el voltaje y corriente en cada elemento del circuito, llene la tabla 4.8

Tabla 4.8. Datos Medidos y calculados del circuito RC serie.

	R	С	1	Z _{Total}	P _{Total}
Voltaje calculado			NP	NP	NP
Voltaje medido			NP	NP	NP
Corriente calculada			NP	NP	NP
Corriente medida			NP NP	NP	NP
Corriente total calculada	NP	NP		NP	NP
Corriente total medida	NP	NP		NP	NP
Potencia calculada			NP	NP	NP
Potencia con valores medidos			NP	NP	
Resistencia total calculada	NP	NP	NP		NP
Resistencia total medida	NP	NP	NP		NP
Potencia total calculada	NP	NP	NP	NP	

NP no anotar datos

4.5.- Circuito RC paralelo, alimentado con fuente de CD.

Formatos para prácticas de laboratorio

	R	С	1	Z _{Total}	P _{Total}
Voltaje calculado			NP	NP	NP
Voltaje medido			NP	NP	NP
Corriente calculada			NP	NP	NP
Corriente medida			NP	NP	NP
Corriente total calculada	NP	NP		NP	NP
Corriente total medida	NP	NP		NP	NP
Potencia calculada			NP	NP	NP
Potencia con valores medidos			NP	NP	
Resistencia total calculada	NP	NP	NP		NP
Resistencia total medida	NP	NP	NP		NP
Potencia total calculada	NP	NP	NP	NP	

NP no anotar datos

Circuitos resistencia-diodo

- 4.6.- Circuitos con resistencia y diodo semiconductor. Armar circuitos con resistencia y diodo semiconductor, medir el voltaje y corriente en cada componente utilizando con el multímetro digital (DVM).
- a).- Construya el circuito de la figura 4.6a), con V= 5 volts, LED y seleccione una resistencia que este en el rango de $150\Omega \le R \le 330\Omega$. Mida el voltaje y corriente en cada elemento del circuito y llene la tabla 4.10.
- b).- Construya el circuito de la figura 4.6b), con V= 5 volts, LED y el valor de la resistencia es la que seleccionó en el inciso a). Mida el voltaje y corriente en cada elemento del circuito y llene la tabla 4.10.

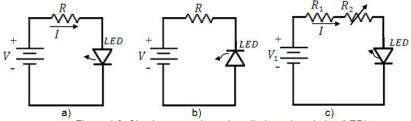


Figura 4.6. Circuito con resistencia y diodo emisor de luz (LED) a) LED en polarización directa, b) LED polarizado inversamente y

Tabla 4.10. Datos del circuito de la figura 4.4a) y b)

	a)		b)	
	R	LED	R	LED
Voltaje calculado				
Voltaje medido		3	- 12	
Corriente calculada		3: 3:		
Corriente medida				
Potencia calculada				
Potencia con los valores medidos				

Formatos para prácticas de laboratorio

c).- Construya el circuito de la figura 4.6c), con V= 5 volts, LED, $R_1=100~\Omega$ y una resistencia variable R_2 (potenciómetro) mayor de 200Ω . Mida el voltaje, corriente en cada elemento del circuito, el valor mínimo y máximo de R_1+R_2 , llene la tabla 4.11

Tabla 4.11. Datos del circuito de la figura 4.6c)

	$R_1 + R_2$	LED
Resistencia mínima		
Voltaje mínimo calculado		
Voltaje mínimo medido	i i	
Corriente mínima calculada	i	
Corriente mínima medida		
Potencia mínima calculada		
Potencia con los valores mínimos medidos		
Resistencia media		
Voltaje media calculado		
Voltaje media medido		
Corriente media calculada	i i	
Corriente media medida		
Potencia media calculada		
Potencia con los valores media medidos		
Resistencia máxima		
Voltaje máximo calculado		
Voltaje máximo medido		
Corriente máxima calculada		
Corriente máxima medida		
Potencia máxima calculada		
Potencia con los valores máximos medidos		

d).- Construya el circuito de la figura 4.7a) y b), con $V=12\ volts$, diodo rectificador y calcule el valor de la resistencia, para no dañar el diodo. Mida el voltaje y corriente en cada elemento del circuito y llene la tabla 4.13.

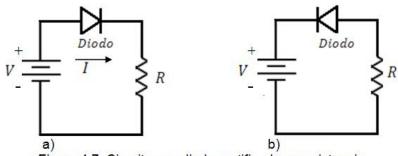


Figura 4.7. Circuito con diodo rectificador y resistencia, a) Diodo en polarización directa, b) Diodo en polarización inversa.

Tabla 4.12. Datos del circuito de la figura 4.5, con V = 5 volts

Formatos para prácticas de laboratorio

	a)		b)	
	R	Diodo	R	Diodo
Voltaje calculado				
Voltaje medido			8	Y .
Corriente calculada				
Corriente medida	5-7			
Potencia calculada				
Potencia con los valores medidos				

Tabla 4.13. Datos del circuito de la figura 4.5, con $V=12 \ volts$

	a)		b)	
	R	Diodo	R	Diodo
Voltaje calculado				
Voltaje medido				97
Corriente calculada				
Corriente medida	1-7			
Potencia calculada		İ		13
Potencia con los valores medidos				

C) CÁLCULOS Y REPORTE	

_						
5.	RESUL	TAD	OS Y	CONC	LUSIC)NES

6. ANEXOS

7. REFERENCIAS