

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD

Formatos para prácticas de laboratorio

CARRERA	PLAN DE ESTUDIO	CLAVE ASIGNATURA	NOMBRE DE LA ASIGNATURA	
TRONCO COMÚN	2003-1	5320	PROGRAMACIÓN	

PRÁCTICA	LABORATORIO	Ciencias Básicas (Programación)	DURACIÓN
No.	DE		(HORA)
PRAC-08	NOMBRE DE LA PRÁCTICA	Interaciones Anidadas (Ciclos Anidados)	02:00

1. INTRODUCCIÓN

Un ciclo es un grupo de instrucciones que la computadora ejecuta en forma repetida, en tanto se conserve verdadera alguna condición de continuación del

Formuló	Revisó	Aprobó	Autorizó
ING. JUAN FRANCISCO ZAZUETA APODACA	IXEVISO	Дргово	Autorizo
L.S.C. DULCE MARÍA ÁLVAREZ SÁNDEZ			
L.S.C. LIZBETH JAIME SOLORIO			
ING. EVA HERRERA RAMÍREZ			
ING. HÉCTOR JUVERA VELÁSQUEZ	M. C. ENRIQUE RENÉ BASTIDAS PUGA	M.C. MAXIMILIANO DE LAS FUENTES LARA	M.C. MIGUEL ÁNGEL MARTÍNEZ ROMERO
L.S.C. ELVIRA AMALIA REZA VALDEZ			
ING. MARIBEL ARACELI MEJÍA GORDILS			
LIC. HILDA OLIVIA ALBARRÁN PADILLA			
L.S.C. ELVIA CRISTINA MÁRQUEZ SALGADO			
Maestro	Coordinador de Programa Educativo	Subdirector de la Facultad	Director de la Facultad

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD

Formatos para prácticas de laboratorio

ciclo. Esta condición puede ser simple o compuesta de otras condiciones unidas por operadores lógicos

2. OBJETIVO (COMPETENCIA)

Aplicar teoría de ciclos anidados, elaborando programas iterativos anidados, para la solución de problemas reales en el área de ingeniería. Con disposición para trabajar en forma individual y responsabilidad en el uso del equipo del laboratorio.

3. FUNDAMENTO

Ciclos anidados

El cuerpo de un bucle puede contener cualquier tipo de sentencias secuenciales, selectivas (if, o switch) o repetitivas (do-while(), while() o for). Cuando el ciclo está contenido en otro ciclo, se denominan ciclos anidados, no importando que los ciclos sean del mismo tipo o sean diferentes.

EJEMPLO CICLO ANIDADO.

Este programa imprime la siguiente salida:

```
1234
      1234
      1234
      1234
      1234
# include <stdio.h>
# include <conio.h>
void main()
   int cont, col=15;
   clrscr();
   for (cont = 1; cont \leq 5; cont ++)
      gotoxy (15, ren++);
     for(cont2 = 1; cont2 <= 4; cont2 ++)
        printf ("%d ",cont2);
   getch();
}
```


UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD

Formatos para prácticas de laboratorio

OTRO EJEMPLO

Este programa que calcula e imprime el cubo de 5 números generados aleatoriamente entre los número del 0 al 10

Ejemplo de Salida:

```
Núm.
           Operación
                         Resultado
1.- 3 --> 3 * 3 * 3 = 27
2.- 8 --> 8 * 8 * 8 = 512
3.- 0 --> 0 * 0 * 0 = 0
4.- 10 --> 10 * 10 * 10 = 1000
5.-7 --> 7 * 7 * 7 = 343
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
void main()
  int x, y, pot, num, col=20;
  randomize();
  clrscr();
  for (x=1; x <= 5; x++)
      pot=1;
      num= rand()%11;
      gotoxy(15, col++);
      printf ("%2d.- %2d --> ", x, num);
      for (y=1; y <= 3; y++)
         pot*=num;
         printf(" %2d *", num);
      printf("\b= %d ", pot);
  }
  getch();
```

En el programa anterior se utiliza la generan los números en forma aleatoria de la siguiente manera:

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD

Formatos para prácticas de laboratorio

Para generar un valor aleatoriamente deberás:

- 1. Incluir la librería <stdlib.h>
- Agregar, antes de generar los números el comando: randomize(); Este comando sirve para que cada vez que corra el programa genere números diferentes a la corrida anterior.
- 3. Para generar un número aleatorio, se pueden utilizar las sentencias rand o random.

Sintaxis de la sentencia rand:

var = rand() % rango; (rango = rango -1)
Donde: Se genera un número entre el 0 y rango-1)

Sintaxis de la sentencia random:

var = random(rango); (rango = rango -1)
Donde: Se genera un número entre el 0 y rango-1)

Ejemplos con rand:

x= rand()%5; Genera un número entre 0 y 4

y= rand()%20; Genera un número entre 0 y 19 z= rand()%100; Genera un número entre 0 y 99

Ejemplos con random:

a= random(300); Genera un número entre 0 y 299 b= random(10); Genera un número entre 0 y 9 c= random(100); Genera un número entre 0 y 99

4. PROCEDIMIENTO (DE	SCRIPCIÓN)	
A) EQUIPO	NECESARIO	MATERIAL DE APOYO

1.- Computadora con drive 3.5"

Práctica PRAC08

- 2.- Diskette de Trabajo 3.5" doble lado, Alta densidad con protector de plástico
- 3.- Software Lenguaje Turbo C Ver 3.0

B) DESARROLLO DE LA PRÁCTICA

Las prácticas están clasificadas por días de la semana. El alumno, realizará los ejercicios que le corresponden de acuerdo al día de laboratorio.

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD

Formatos para prácticas de laboratorio

PRACTICAS DIA LUNES:

1. Realizar un programa que imprima las siguientes figuras

*****	*	*****
*****	***	****
*****	****	****
*****	*****	***
****	*****	**
*****	******	*

Realizar cada figura, por separado, dentro de la misma pantalla, utilizando ciclos anidados.

- 2. Realizar un programa que lea nombre, 5 calificaciones(en un ciclo) y presente el promedio de un alumno, pregunte si desea continuar, en caso afirmativo pregunte por otro alumno, de lo contrario imprima: a) La cantidad de alumnos; b)El promedio del grupo; c) Cantidad de alumnos con promedio mayor a 8.
- 3. Realizar un programa que imprima los números primos que se encuentran en un rango dado con anterioridad (Comprobar que el rango sea válido).

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD

Formatos para prácticas de laboratorio

PRACTICAS DIA MARTES:

1. Realizar un programa que imprima...

	•	•			
10,1	11,1	12,1	13,1	14,1	15,1
10,2	11,2	12,2	13,2	14,2	15,2
10,3	11,3	12,3	13,3	14,3	15,3
10,4	11,4	12,4	13,4	14,4	15,4
10,5	11,5	12,5	13,5	14,5	15,5

2. Realizar un programa que calcule una operación matemática de "x" cantidad de números y diferentes operadores hasta que lea un símbolo = (igual a). Por ejemplo:

Preguntar si desea otra operación, en caso afirmativo volver a leer otra operación hasta indicar lo contrario.

3. Realizar un programa que pida un rango de números (validar que el primer número sea menor al segundo) e indicar cuántos números en dicho rango son: número perfecto, número deficiente o excedente. Preguntar si desea continuar, en caso afirmativo pedir un nuevo rango

Se entiende por número perfecto aquel que sus divisores suman el total de dicho número (Ejemplo el 6 ya que 1 + 2 + 3 = 6), número deficiente su suma es menor a dicho número (Ejemplo, el 10 ya que 1 + 2 + 5 = 8) y número excedente su suma es mayor a dicho número (Ejemplo, el 12 ya que 1 + 2 + 3 + 4 + 6 = 16).

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD

Formatos para prácticas de laboratorio

PRACTICAS DIA MIÉRCOLES:

1. Escribir un programa que muestre una salida de 20 líneas de este tipo:

2. Realizar un programa que calcule la suma

$$1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$
 donde n se especifica por el usuario.

3. Realizar un programa que lea 5 números y por cada número leído, mande a imprimir dicha cantidad en asteriscos, antes de leer el siguiente número. Ejemplo presentarlo de la siguiente manera:

Escribe 5 números:

4. Realizar un programa que Presente las Tabla de multiplicar de los números del 1 al 5.

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD

Formatos para prácticas de laboratorio

PRACTICAS DIA JUEVES:

1. Realizar un programa que presente siguiente menú de opciones:

Producto por sumas sucesivas	[1]
División por sumas sucesivas	[2]
Mostrar números comprendidos	[3]
Salida	[4]
Opción	į į

Donde:

Opción 1.- Producto por sumas sucesivas (leer dos números enteros mayores que 0 y calcular su producto mediante sumas sucesivas).

Opción 2.- División por restas sucesivas (leer dos números enteros mayores que 0 y calcular su división mediante restas sucesivas, validar que el primero sea mayor al segundo).

Opción 3.- Mostrar números comprendidos (leer dos números enteros cualesquiera y mostrar los números comprendidos entre ambos, incluyendo dichos números, validar que el primero sea menor al segundo, en caso de no ser así intercambiar sus valores, ejemplo si n1=8, y n2=4 intercambiar sus **valores** a n1=4 y n2=8 e imprimir el rango, 4, 5, 6, 7, 8).

Opción 4.- Salida (Regresar al menú hasta que se elija esta opción)

2. Realizar un programa que calcule la suma

$$1 + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}$$

Donde n se especifica por el usuario y las potencias calcularlas por medio de ciclos.

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD

Formatos para prácticas de laboratorio

PRACTICAS DIA VIERNES:

- 1. Realizar un programa que imprima los números primos comprendidos entre el 1 y el 1000. Ej. 1, 2, 3, 5, 7, 11, 13, 17, etc.
- 2. Realizar un programa que dibuje un marco del tamaño que el usuario determine. El programa deberá leer 2 coordenadas, la primera es la esquina superior izquierda y la segunda la esquina inferior derecha. Comprobar que las coordenadas sean válidas.
- 3. Realizar un programa que ayude a in niño de primaria a estudiar la operación de suma. El programa deberá generar 2 números aleatoriamente entre el 0 y el 99 (ver al final del texto). Imprimir dichos números en forma de suma (Ejemplo: 65 + 11 =), y pedir el resultado de la suma; En caso de que sea correcta imprimir "Correcto, Felicidades por contestar bien", en caso contrario imprimir "Incorrecto, el resultado es: _#_".

El programa deberá generar 10 sumas e ir contando los resultados correctos e imprimir el total de respuestas correctas, después debe preguntar si desea continuar, en caso afirmativo volver a pedir otras 10 operaciones, hasta indicar lo contrario.

Para generar un valor aleatoriamente deberás:

- 1. Incluir la librería <stdlib.h>
- 2. Agregar, antes de generar los números el comando:

randomize();

3. Para generar un número aleatorio, se pueden utilizar las sentencias rand o random.

Sintaxis de la sentencia rand:

var = rand() % rango; (rango = rango -1)

Donde: Se genera un número entre el 0 y rango-1)

Sintaxis de la sentencia random:

Donde: Se genera un número entre el 0 y rango-1)

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA (UNIDAD MEXICALI) DOCUMENTO DEL SISTEMA DE CALIDAD

Formatos para prácticas de laboratorio

Ejemplo con rand:

a= rand() % 30; Genera un número entre 0 y 29 b= rand() % 100; Genera un número entre 0 y 99

Ejemplo con random:

x= random(5); Genera un número entre 0 y 4 y= random(100); Genera un número entre 0 y 99

C)

CÁLCULOS Y REPORTE

 El alumno deberá depurar sus programas para eliminar los errores de compilación y ejecutar los programas con diversos valores, de tal forma que valide los resultados esperados.

5. RESULTADOS Y CONCLUSIONES

 El maestro revisará los programas proporcionando diferentes valores para determinar si el programa se ejecuta correctamente.

6. ANEXOS

Ninguno.

7. REFERENCIAS

Ninguna.